Document Type : Original Article


1 Post Graduate Student, Department of Orthodontics and Dentofacial Orthopedics, The Oxford Dental College and Hospital, Bangalore, Karnataka, Indiaost graduate student

2 Professor and Head of Department, Department of Orthodontics and Dentofacial Orthopedics, The Oxford Dental College and Hospital, Bangalore, Karnataka, India

3 Professor, Department of Orthodontics and Dentofacial Orthopedics, The Oxford Dental College and Hospital, Bangalore, Karnataka, India

4 Associate Professor, Department of Orthodontics and Dentofacial Orthopedics, The Oxford dental college and hospital, Bangalore, Karnataka, India

5 Associate Professor, Department of orthodontics and Dentofacial orthopedics, The Oxford Dental College and Hospital, Bangalore, Karnataka, India

6 Reader, Department of orthodontics and Dentofacial orthopedics, The Oxford Dental College and Hospital, Bangalore, Karnataka, India


Aim: Metallic corrosion of orthodontic appliances occurs due to potentially damaging physical and chemical agents. The major corrosion products of stainless steel are iron, chromium, and nickel. When tissues are exposed to certain concentrations of a primary irritant for certain periods, cytotoxic effects may be observed. Hence, this study aimed to assess the cytotoxicity of nickel, iron, and chromium ions during fixed orthodontic treatment onto human keratinocytes (HaCaT).
Methods: The metal ions nickel, chromium, and iron in concentrations of 75, 150, 300, 600, 1200, and 2400 μg/ml were prepared to assess the cytotoxicity on HaCaT cells. The control group included these metal ions at 0 μg/ml. Cytotoxicity was assessed by microculture tetrazolium (MTA) assay. The half maximal inhibitory concentration (IC50) was measured and a scanning electron microscope (SEM) was used to assess the morphological changes of the HaCaT cells. The Kruskal-Wallis test followed by the Bonferroni’s post hoc test was carried out to determine the difference in percentage inhibition within and between the groups at various concentrations.
Results: Nickel showed the highest cytotoxic effects in comparison with other metal ions.  Iron hexahydrate, nickel hexahydrate, and chromium hexahydrate have shown an IC50 value of 552.4 μg/ml, 364.1 μg/ml, and 641.1 μg/ml inhibition in HaCaT cells respectively. Cytotoxic effects were dose dependent on the tested materials. Comparison of percentage inhibition between groups showed a p-value of 0.372.
Conclusion: The present study showed that the nickel, chromium, and iron ions induced a wide range of toxicity to human keratinocytes. The IC50 values ranged between 364.1 and 641.1. Nickel was the most toxic metal tested between the concentrations of 75 to 2400 μg/ml for HaCaT cells compared to other metal ions used in the study.


Main Subjects

  1. Huang TH, Ding SJ, Min Y, Kao CT. Metal ion release from new and recycled stainless steel brackets. The European Journal of Orthodontics. 2004 Apr 1;26(2):171-7. doi: https://10.1093/ejo/26.2.171. PMID: 15130040.
  2. Zigante M, Rincic Mlinaric M, Kastelan M, Perkovic V, Trinajstic Zrinski M, Spalj S. Symptoms of titanium and nickel allergic sensitization in orthodontic treatment. Prog Orthod. 2020;21(1):17. doi: 10.1186/s40510-020-00318-4.  PMID: 32607604.
  3. Bationo R, Rouamba A, Diarra A, Beugré-Kouassi MLA, Beugré JB, Jordana F. Cytotoxicity evaluation of dental and orthodontic light-cured composite resins. Clin Exp Dent Res. 2021;7(1):40-48. doi: 10.1002/cre2.337. PMID: 33103376.
  4. Kuhta M, Pavlin D, Slaj M, Varga S, Lapter-Varga M, Slaj M. Type of archwire and level of acidity: effects on the release of metal ions from orthodontic appliances. Angle Orthod. 2009;79(1):102-10. doi: 10.2319/083007-401.1.  PMID: 19123703.
  5. Mikulewicz M, Chojnacka K, Wołowiec P. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system. Angle Orthod. 2014;84(1):140-8. doi:  2319/113012-911.1.  PMID: 23477423.
  6. Karnam SK, Reddy AN, Manjith CM. Comparison of metal ion release from different bracket archwire combinations: an in vitro study. J Contemp Dent Pract. 2012;13(3):376-81.
  7. Laxmikanth SM, Malik SA, Ramachandra CS, Shetty S, Shetty A, Kumar A, Joseph R. WITHDRAWN: The Cytotoxic Effect of Titanium Oxide Surface Modified Orthodontic Stainless-Steel Wires. Iranian Journal of Orthodontics. 2019;14(1). doi: 10.5812/ijo.66957.
  8. Petković Didović M, Jelovica Badovinac I, Fiket Ž, Žigon J, Rinčić Mlinarić M, Čanadi Jurešić G. Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations. Materials (Basel). 2023;16(11):4156. doi: 10.3390/ma16114156.  PMID: 37297290.
  9. Bishara SE, Barrett RD, Selim MI. Biodegradation of orthodontic appliances. Part II. Changes in the blood level of nickel. Am J Orthod Dentofacial Orthop. 1993;103(2):115-9. doi: 10.1016/S0889-5406(05)81760-3.  PMID: 8427215.
  10. Eliades T, Athanasiou AE. In vivo aging of orthodontic alloys: implications for corrosion potential, nickel release, and biocompatibility. Angle Orthod. 2002;72(3):222-37. doi: 10.1043/0003-3219(2002)072<0222:IVAOOA>2.0.CO;2. PMID: 12071606.
  11. Chakravarthi S, Padmanabhan S, Chitharanjan AB. Allergy and orthodontics. J Orthod Sci. 2012;1(4):83-7. doi: 10.4103/2278-0203.105871.  PMID: 24987632.
  12. Bagatin CR, Ito IY, Andrucioli MC, Nelson-Filho P, Ferreira JT. Corrosion in Haas expanders with and without use of an antimicrobial agent: an in situ study. J Appl Oral Sci. 2011;19(6):662-7. doi: 10.1590/s1678-77572011000600020. PMID: 22231004.
  13. Doomen RA, Nedeljkovic I, Kuitert RB, Kleverlaan CJ, Aydin B. Corrosion of orthodontic brackets: qualitative and quantitative surface analysis. Angle Orthod. 2022;92(5):661–8. doi: 10.2319/072321-584.1.  PMID: 35604674.
  14. Eliades T. Orthodontic materials research and applications: part 1. Current status and projected future developments in bonding and adhesives. Am J Orthod Dentofacial Orthop. 2006;130(4):445-51. doi: 1016/j.ajodo.2005.12.028.  PMID: 17045143.
  15. Messer RL, Bishop S, Lucas LC. Effects of metallic ion toxicity on human gingival fibroblasts morphology. Biomater Sci. 1999;20(18):1647-57.
  16. Cohen MD, Kargacin B, Klein CB, Costa M. Mechanisms of chromium carcinogenicity and toxicity. Crit Rev Toxicol. 1993;23(3):255-81. doi: 10.3109/10408449309105012. PMID: 8260068.
  17. Gwinnett AJ. Corrosion of resin-bonded orthodontic brackets. Am J Orthod. 1982;81(6):441-6. doi: 10.1016/0002-9416(82)90421-3.  PMID: 6758601.
  18. Maijer R, Smith DC. Corrosion of orthodontic bracket bases. Am J Orthod. 1982;81(1):43-8. doi: 10.1016/0002-9416(82)90287-1. PMID: 6758590.
  19. Namikoshi T, Yoshimatsu T, Suga K, Fujii H, Yasuda K. The prevalence of sensitivity to constituents of dental alloys. J Oral Rehabil. 1990;17(4):377-81. doi: 10.1111/j.1365-2842.1990.tb00022.x. PMID: 2213333.
  20. Natarajan M, Padmanabhan S, Chitharanjan A, Narasimhan M. Evaluation of the genotoxic effects of fixed appliances on oral mucosal cells and the relationship to nickel and chromium concentrations: an in-vivo study. Am J Orthod Dentofacial Orthop. 2011;140(3):383-8. doi: 10.1016/j.ajodo.2010.07.027. PMID: 21889083.
  21. Noble J, Ahing SI, Karaiskos NE, Wiltshire WA. Nickel allergy and orthodontics, a review and report of two cases. Br Dent J. 2008;204(6):297-300. doi: 10.1038/bdj.2008.198. PMID: 18356874.
  22. Saghiri MA, Orangi J, Asatourian A, Mehriar P, Sheibani N. Effect of mobile phone use on metal ion release from fixed orthodontic appliances. Am J Orthod Dentofacial Orthop. 2015;147(6):719-24. doi: 10.1016/j.ajodo.2015.01.023.  PMID: 26038076.
  23. Amoli Singh NP, Shetty S, Shetty S, Ashith MV, Ashith MV. Biocompatibility In Orthodontics. European Journal of Molecular and Clinical Medicine.2020;76: 381-390.
  24. Kim H, Johnson JW. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires. Angle Orthod. 1999;69(1):39-44. doi: 10.1043/0003-3219(1999)069<0039:COSSNT>2.3.CO;2.  PMID: 10022183.
  25. Yamamoto A, Honma R, Sumita M. Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res. 1998 Feb;39(2):331-40. doi: 10.1002/(sici)1097-4636(199802)39:2<331::aid-jbm22>;2-e. PMID: 9457565.
  26. Issa Y, Watts DC, Duxbury AJ, Brunton PA, Watson MB, Waters CM. Mercuric chloride: toxicity and apoptosis in a human oligodendroglial cell line MO3.13. Biomaterials. 2003;24(6):981-7. doi: 10.1016/s0142-9612(02)00436-2. PMID: 12504520.