Document Type : Original Article


1 Assistant Professor, Department of Orthodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Orthodontist, Private Practice, Tehran, Iran

3 Dentist, Private Practice, Tehran, Iran


Aim: The aim of this investigation was to assess the efficacy and force decay of elastomeric chains based on their morphology and elongation extent.
Methods: Two-hundred-and-seventy elastics from three companies [Ortho Technology (OT), American Orthodontics (AO), G&H, 10 specimens ×27 subgroups] were elongated to 40%, 60%, and 100% and the initial forces were measured. Then after four weeks of incubation in artificial saliva, the residual forces were measured. Forces and force decays were compared across brands, morphologies, and elongation extents (α=0.001).
Results: Forces degraded significantly over time (repeated-measures ANOVA, P<0.001). Significant differences existed among the levels of all parameters, in terms of the initial forces, residual forces, and force degradation (3-way ANOVA, P<0.001). Results of most of the Tukey post hoc tests were significant (P<0.001). The longer the elongation extent, the higher the force waste (partial correlation coefficient, r=0.885, P< 0.001).
Conclusion: Initial force was improved when using the OT brand and closed elastics, and by stretching the elastic to 100%. Force loss was minimized when using the G&H brand and open elastics, and by stretching to 40%. Using the OT brand and closed elastics, and 100% stretching caused the highest residual forces after a month. However, the initial forces provided by the 100% elongations were not sound. Force loss was increased by using the OT brand and closed elastics, and with 100% elongations. The lowest residual forces were seen in the AO brand, long elastics, and those elongated to 40%. 


Main Subjects

  1. Foroughi Moghaddam S, Kamali MD. Force decay and discoloration of thermoplastic and thermoset orthodontic elastomeric chains. Braz Dent Sci. 2022;25(1):1-9. doi: 10.4322/bds.2022.e2612.
  2. ad Silva Chaves-Filho AC, Costa AR, Sousa Borges LP, Almada Santos EC, Crepaldi MV, Vedovello SAS, et al. Force degradation of elastomeric chains after storage time and mechanical brushing. Braz Dent J. 2021;32(4):55-61. doi: 10.1590/0103-6440202104487. PMID: 34787251.
  3. Andhare P, Datana S, Agarwal SS, Chopra SS. Comparison of in vivo and in vitro force decay of elastomeric chains/modules: a systematic review and meta analysis. J World Fed Orthod. 2021;10(4):155-62. doi: 10.1016/j.ejwf.2021.07.003. PMID: 34364839.
  4. Menon VV, Madhavan S, Chacko T, Gopalakrishnan S, Jacob J, Parayancode A. Comparative assessment of force decay of the elastomeric chain with the use of various mouth rinses in simulated oral environment: an in vitro study. J Pharm Bioallied Sci. 2019;11(2):S269-S73. doi: 10.4103/JPBS.JPBS_9_19. PMID: 31198351.
  5. Mirhashemi A, Saffarshahroudi A, Sodagar A, Atai M. Force-degradation pattern of six different orthodontic elastomeric chains. J Dent (Tehran). 2012;9(4):204-15. PMID: 23323182.
  6. Soares Santos AC, Tortamano A, Frazatto Naccarato SR, Dominguez-Rodriguez GC, Vigorito JW. An in vitro comparison of the force decay generated by different commercially available elastomeric chains and NiTi closed coil springs. Braz Oral Res. 2007;21(1):51-7. doi: 10.1590/s1806-83242007000100009. PMID: 17384855.
  7. de Carvalho Notaroberto DF, Martins MME, de Andrade Goldner MT, de Moraes Mendes A, Abdo Quintão CC. Force decay evaluation of latex and non-latex orthodontic intraoral elastics: in vivo study. Dental Press J Orthod. 2018;23(6):42-7. doi: 10.1590/2177- 6709.23.6.042-047.oar. PMID: 30672984.
  8. Ramachandraiah S, Sridharan K, Nishad A, Manjusha KK, Abraham EA, Ramees MM. Force decay characteristics of commonly used elastomeric chains on exposure to various mouth rinses with different alcohol concentration: an in vitro study. J Contemp Dent Pract. 2017;18(9):813-20. doi: 10.5005/jpjournals-10024-2132. PMID: 28874647.
  9. Halimi A, Benyahia H, Doukkali A, Azeroual M-F, Zaoui F. A systematic review of force decay in orthodontic elastomeric power chains. Int Orthod. 2012;10(3): 223-40. doi: 10.1016/j.ortho.2012.06.013. PMID: 22906378.
  10. Mousavi SM, Mahboobi S, Rakhshan V. Effects of different stretching extents, morphologies, and brands on initial force and force decay of orthodontic elastomeric chains: An in vitro study. Dent Res J (Isfahan). 2020;17(5):326-37. doi: 10.4103/1735- 3327.294331. PMID: 33343840.
  11. Braga E, Souza G, Barretto P, Ferraz C, Pithon M. Experimental evaluation of strength degradation of orthodontic chain elastics immersed in hot beverages. J Indian Orthod Soc. 2019;53(4):244–248. doi: 10.1177/0301574219867540.
  12. DE Genova DC, McInnes-Ledoux P, Weinberg R, Shaye R. Force degradation of orthodontic elastomeric chains—a product comparison study. Am J Orthod. 1985;87(5):377-84. doi: 10.1016/0002-9416(85) 90197-6. PMID: 3857862.
  13. Behnaz M, Namvar F, Sohrabi S, Parishanian M. Effect of bleaching mouthwash on force decay of orthodontic elastomeric chains. J Contemp Dent Pract. 2018;19(2):221-5. doi: 10.5005/jp-journals10024-2240. PMID: 29422474.
  14. Evans KS, Wood CM, Moffitt AH, Colgan JA, Holman JK, Marshall SD, et al. Sixteen-week analysis of unaltered elastomeric chain relating in-vitro force degradation with in-vivo extraction space tooth movement. Am J Orthod Dentofacial Orthop. 2017;151(4):727-34. doi: 10.1016/j.ajodo.2016.10.020. PMID: 28364896.
  15. Nachan RA, Kalia A, Al-Shahrani I. Force degradation of orthodontic elastomeric chain due to commonly consumed liquids: An in vitro study. World J Dent. 2015;6(1):31-8. doi: 10.5005/jp-journals-10015- 1309.
  16. Issa AR, Kadhum AS, Mohammed SA. The effects of zinc-containing mouthwashes on the force degradation of orthodontic elastomeric chains: an in vitro study. Int J Dent. 2022;2022:1-7. doi: 10.1155/2022/3557317. PMID: 35531573.
  17. Osorio LB, Osawa Gutierrez LM, de Lima EM, Mota EG, de Menezes LM. Disinfection of orthodontic elastomers and its effects on tensile strength. Turk J Orthod. 2022;35(1):22-6. doi: 10.5152/TurkJ Orthod.2022.20151. PMID: 35370130.
  18. Halimi A, Azeroual MF, Doukkali A, El Mabrouk K, Zaoui F. Elastomeric chain force decay in artificial saliva: An in vitro study. Int Orthod. 2013;11(1): 60-70. doi: 10.1016/j.ortho.2012.12.007. PMID: 23375920.
  19. Patel A, Thomas B. In vivo evaluation of the force degradation characteristics of four contemporarily used elastomeric chains over a period of 6 weeks. J World Fed Orthod. 2018;7(4):141-5. doi: 10.1016/j.ejwf.2018. 09.001.
  20. Adel Qodcieh SM, Al-Khateeb SN, Jaradat ZW, Abu Alhaija ES. Force degradation of orthodontic latex elastics: an in-vivo study. Am J Orthod Dentofacial Orthop. 2017;151(3):507-12. doi: 10.1016/j.ajodo.2016. 08.023.
  21. Masoud AI, Tsay TP, BeGole E, Bedran-Russo AK. Force decay evaluation of thermoplastic and thermoset elastomeric chains:A mechanical design comparison. Angle Orthod. 2014;84(6):1026-33. doi: 10.2319/ 010814-28.1. PMID: 24784844.
  22. Eliades T, Eliades G, Watts DC. Structural conformation of in vitro and in vivo aged orthodontic elastomeric modules. Eur J Orthod. 1999;21(6):649- 58. doi: 10.1093/ejo/21.6.649. PMID: 10665194.
  23. Taloumis LJ, Smith TM, Hondrum SO, Lorton L. Force decay and deformation of orthodontic elastomeric ligatures. Am J Orthod Dentofacial Orthop. 1997; 111(1):1-11. doi: 10.1016/s0889-5406(97)70295-6. PMID: 9009917.
  24. Eliades T, Gioka C, Zinelis S, Makou M. Study of stress relaxation of orthodontic elastomers: Pilot method report with continuous data collection in real time. Hellenic Orthod Rev. 2003;6(1):13-26.
  25. Andreasen GF, Bishara S. Comparison of alastik chains with elastics involved with intra-arch molar to molar forces. Angle Orthod. 1970;40(3):151-8. doi: 10.1043/0003-3219(1970)040<0151:COACWE>2. 0.CO;2. PMID: 5269949.
  26. Rock WP, Wilson HJ, Fisher SE. A laboratory investigation of orthodontic elastomeric chains. Br J Orthod. 1985;12(4):202-7. doi: 10.1179/bjo.12.4.202. PMID: 3863676.
  27. Dadgar S, Sobouti F, Armin M, Ebrahiminasab P, Moosazadeh M, Rakhshan V. Effects of 6 different chemical treatments on force kinetics of memory elastic chains versus conventional chains: An in vitro study. Int Orthod. 2020;18(2):349-58. doi: 10.1016/j.ortho. 2020.02.003. PMID: 32197834.
  28. Eliades T, Eliades G, Silikas N, Watts DC. Tensile properties of orthodontic elastomeric chains. Eur J Orthod. 2004;26(2):157-62. doi: 10.1093/ejo/26.2.157
  29. Bousquet JA, Tuesta O, Flores-Mir C. In vivo comparison of force decay between injection molded and die-cut stamped elastomers. Am J Orthod Dentofacial Orthop. 2006;129(3):384-9. doi: 10.1016/j.ajodo.2005.09.002. PMID: 16527634.
  30. Nattrass C, Ireland AJ, Sherriff M. An investigation into the placement of force delivery systems and the initial forces applied by clinicians during space closure. Br J Orthod. 1997;24(2):127-31. doi: 10.1093/ortho/ 24.2.127. PMID: 9218110.
  31. Baty DL, Volz JE, von Fraunhofer JA. Force delivery properties of colored elastomeric modules. Am J Orthod Dentofacial Orthop. 1994;106(1):40-6. doi: 10.1016/S0889-5406(94)70019-2. PMID: 8017348.
  32. Storie DJ, Regennitter F, von Fraunhofer JA. Characteristics of a fluoride-releasing elastomeric chain. Angle Orthod. 1994;64(3):199-209. doi: 10.1043/0003-3219(1994)064<0199:COAFEC>2.0.CO; 2. PMID: 8060016.
  33. Boester CH, Johnston LE. A clinical investigation of the concepts of differential and optimal force in canine retraction. Angle Orthod. 1974;44(2):113-9. doi: 10.1043/0003-3219(1974)044<0113:ACIOTC>2.0.CO; 2. PMID: 4597626.
  34. Samuels RH, Rudge SJ, Mair LH. A clinical study of space closure with nickel-titanium closed coil springs and an elastic module. Am J Orthod Dentofacial Orthop. 1998;114(1):73-9. doi: 10.1016/s0889- 5406(98)70241-0. PMID: 9674684.
  35. Aldrees AM, Al-Foraidi SA, Murayshed MS, Almoammar KA. Color stability and force decay of clear orthodontic elastomeric chains: An in vitro study. Int Orthod. 2015;13(3):287-301. doi: 10.1016/j.ortho.2015.06.003. PMID: 26277455.