Document Type : Original Article


1 Professor of Orthodontics, Dentofacial Deformities Research Center, Research Institute for Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Postgraduate student, Department of Orthodontics, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Department of Orthodontics, Nova Southeastern University, College of Dental Medicine, Fort Lauderdale, Florida, USA

4 Department of Orthodontics, Dental School Shahid-Beheshti University of Medical Sciences, Daneshjoo Street, Shahid-Chamran Highway, Tehran, Iran


Aim: Following maxillary impaction, the mandible rotates around a center. Inaccurate determination of mandibular rotation can have profound effects on orthognathic surgical treatment planning and final surgical outcome. The present study determined the relationship between the cephalometric characteristics of candidates for maxillary impaction surgery using sagittal and vertical locations of the center of rotation of the mandible.
Methods: In a descriptive and cross-sectional trial, 36 candidates for LeFort I maxillary impaction surgery were selected. Two lateral cephalograms were obtained in open and closed mouth positions. The center of rotation of the mandible was determined by the Reuleaux technique. Cephalometric measurements of the patients with the determined center of mandibular rotation locations (regions 1 and 4 of the coordinate axis) were done and the results were subjected to the student t-test.
Results: The center of mandibular rotation was located in region 1 of the coordinate axis in 17 (50%) and in 17 (50%) in the 4th region of the coordinate axis. Statistically significant differences existed regarding the MP-SN (p<0.006), CO-GO (p<0.006), and CO-GN (p<0.04) at two regions of 1 and 4 for the center of rotation of the mandible in the coordinate axis.
Conclusion: With the decreased length of the ramus and increased inclination of the plane, the center of rotation of the mandible tended to be situated at region 1 of the coordinate axis, and together with the increased length of the ramus and decreased plane inclination, the center of mandibular rotation tended to be located at region 4 of the coordinate axis.


Main Subjects

  1. Chen Z, Mo S, Fan X, You Y, Ye G, Zhou N. A Metaanalysis and Systematic Review Comparing the Effectiveness of Traditional and Virtual Surgical Planning for Orthognathic Surgery: Based on Randomized Clinical Trials. J Oral Maxillofac Surg. 2021;79(2):471.e1-.e19. doi:10.1016/j.joms.2020.09.005.
  2. Philip MR, AlFotawi R. The accuracy of soft tissue movement using virtual planning for non-syndromic facial asymmetry cases-a systematic review. Oral Maxillofac Surg. 2022. doi:10.1007/s10006-022- 01059-w.
  3. Reddy SGK, Ibrahim HM, Bhardwaj S, Potdar S, Kumar A, Uppal A, et al. Autorotation of the Mandible as Sequelae to Maxillary Intrusion: A Systematic Review. J Pharm Bioallied Sci. 2021;13(Suppl 2):S947-s51. doi:10.4103/jpbs.jpbs_389_21.
  4. Nadjmi N, Mommaerts MY, Abeloos JV, De Clercq CA. Prediction of mandibular autorotation. J Oral Maxillofac Surg. 1998;56(11):1241-7; discussion 7-8. doi:10.1016/s0278-2391(98)90599-7.
  5. Wang YC, Ko EW, Huang CS, Chen YR. The interrelationship between mandibular autorotation and maxillary LeFort I impaction osteotomies. J Craniofac Surg. 2006;17(5):898-904. doi:10.1097/01.scs.0000234985.99863.97.
  6. Peleg O, Mijiritsky E, Manor Y, Inchingolo F, Blinder D, Mortellaro C, et al. Predictability of Mandibular Autorotation After Le Fort I Maxillary Impaction in Case of Vertical Maxillary Excess. J Craniofac Surg. 2019;30(4):1102-4. doi:10.1097/scs.0000000000005544.
  7. Mehl A. Hinge axis determination of the temporomandibular joint and its interpretation: what do we really measure? Int J Comput Dent. 2018;21(4):295-303.
  8. Chang CL, Wang DH, Yang MC, Hsu WE, Hsu ML. Functional disorders of the temporomandibular joints: Internal derangement of the temporomandibular joint. Kaohsiung J Med Sci. 2018;34(4):223-30. doi:10.1016/j.kjms.2018.01.004.
  9. Kaklamanos EG, Kolokitha OE. Relation between soft tissue and skeletal changes after mandibular setback surgery: A systematic review and meta-analysis. J Craniomaxillofac Surg. 2016;44(4):427-35. doi:10.1016/j.jcms.2016.01.005.
  10. Quast A, Santander P, Kahlmeier T, Moser N, Schliephake H, Meyer-Marcotty P. Predictability of maxillary positioning: a 3D comparison of virtual and conventional orthognathic surgery planning. Head Face Med. 2021;17(1):27. doi:10.1186/s13005-021- 00279-x.
  11. Barbenel JC, Paul PE, Khambay BS, Walker FS, Moos KF, Ayoub AF. Errors in orthognathic surgery planning: the effect of inaccurate study model orientation. Int J Oral Maxillofac Surg. 2010;39(11):1103-8. doi:10.1016/j.ijom.2010.07.004.
  12. Robin O, Coste A. [Orthognathic surgery and joint dysfunctions: benefits or risks?]. Orthod Fr. 2021;92(4):381-90. doi:10.1684/orthodfr.2021.63.
  13. Wolford LM. Comprehensive Post Orthognathic Surgery Orthodontics: Complications, Misconceptions, and Management. Oral Maxillofac Surg Clin North Am. 2020;32(1):135-51. doi:10.1016/j.coms.2019.09.003.
  14. Eshghpour M, Shooshtari Z, Labafchi A, Radvar N, Tohidi E, Samieirad S. Does Mandibular Advancement Orthognathic Surgery Lead to TMJ Dysfunction in Skeletal Class 2 Patients? A Quasi-Experimental Trial in an Iranian Population. World J Plast Surg. 2022;11(1):51-8. doi:10.52547/wjps.11.1.51.
  15. Jacobson R, Sarver DM. The predictability of maxillary repositioning in LeFort I orthognathic surgery. Am J Orthod Dentofacial Orthop. 2002;122(2):142-54. doi:10.1067/mod.2002.125576.
  16. Kim J-W, Kim J-C, Jeong C-G, Cheon K-J, Cho S-W, Park I-Y, et al. The accuracy and stability of the maxillary position after orthognathic surgery using a novel computer-aided surgical simulation system. BMC Oral Health. 2019;19. doi:10.1186/s12903-019-0711- y.
  17. Rekow ED, Speidel TM, Koenig RA. Location of the mandibular center of autorotation in maxillary impaction surgery. Am J Orthod Dentofacial Orthop. 1993;103(6):530-6. doi:10.1016/0889- 5406(93)70093-4.
  18. Ahn SJ, Tsou L, Antonio Sánchez C, Fels S, Kwon HB. Analyzing center of rotation during opening and closing movements of the mandible using computer simulations. J Biomech. 2015;48(4):666-71. doi:10.1016/j.jbiomech.2014.12.041.
  19. Lou XT, Shen GF, Feng YM, Fang B, Wu Y, Zhu M. [Inter-relationship between mandibular rotation center and maxillary Le Fort I impaction osteotomies]. Shanghai Kou Qiang Yi Xue. 2014;23(6):704-7.
  20. Moorehead JD, Montgomery SC, Harvey DM. Instant center of rotation estimation using the Reuleaux technique and a Lateral Extrapolation technique. J Biomech. 2003;36(9):1301-7. doi:10.1016/s0021- 9290(03)00156-8.
  21. Mehl A. Is it possible to detect a true rotation axis of the temporomandibular joint with common pantographic methods? A fundamental kinematic analysis. Comput Methods Biomech Biomed Engin. 2020;23(9):445-55. doi:10.1080/10255842.2020.1724975.
  22. Naeije M, Huddleston Slater JJ, Lobbezoo F. Variation in movement traces of the kinematic center of the temporomandibular joint. J Orofac Pain. 1999;13(2):121-7.
  23. Ferrario VF, Sforza C, Lovecchio N, Mian F. Quantification of translational and gliding components in human temporomandibular joint during mouth opening. Arch Oral Biol. 2005;50(5):507-15. doi:10.1016/j.archoralbio.2004.10.002.
  24. Nattestad A, Vedtofte P, Mosekilde E. The significance of an erroneous recording of the centre of mandibular rotation in orthognathic surgery. J Craniomaxillofac Surg. 1991;19(6):254-9. doi:10.1016/s1010-5182(05)80066-6.
  25. Shahbodaghi D, Hosseinzadeh Nik T, Akhundi M, Kavoosinejad S, Saffar a. Cephalometric Evaluation of Maxillary and Mandibular Centers of Rotation Subsequent to Maxillary and Mandibular Surgery. Iranian Journal of Orthodontics. 2020;In Press. doi:10.5812/ijo.102222.
  26. Kim K, Choy K, Park YC, Han SY, Jung H, Choi YJ. Prediction of mandibular movement and its center of rotation for nonsurgical correction of anterior open bite via maxillary molar intrusion. Angle Orthod. 2018;88(5):538-44. doi:10.2319/102317-714.1.
  27. Lindauer SJ, Sabol G, Isaacson RJ, Davidovitch M. Condylar movement and mandibular rotation during jaw opening. Am J Orthod Dentofacial Orthop. 1995;107(6):573-7. doi:10.1016/s0889- 5406(95)70099-4.
  28. Sanz PM, Reyes MG, Torras AB, Castillo JAC, Vich MOL. Craniofacial morphology/phenotypes influence on mandibular range of movement in the design of a mandibular advancement device. BMC Oral Health. 2021;21(1):19. doi:10.1186/s12903-020-01369-z.
  29. Grogger P, Sacher C, Weber S, Millesi G, Seemann R. Identification of 'Point A' as the prevalent source of error in cephalometric analysis of lateral radiographs. Int J Oral Maxillofac Surg. 2018;47(10):1322-9. doi:10.1016/j.ijom.2018.03.019.
  30. Leonardi R, Annunziata A, Caltabiano M. Landmark identification error in posteroanterior cephalometric radiography. A systematic review. Angle Orthod. 2008;78(4):761-5. doi:10.2319/0003 3219(2008)078[0761:Lieipc]2.0.Co;2.
  31. 31.Muradin MS, Rosenberg A, van der Bilt A, Stoelinga PJ, Koole R. The reliability of frontal facial photographs to assess changes in nasolabial soft tissues. Int J Oral Maxillofac Surg. 2007;36(8):728-34. doi:10.1016/j.ijom.2007.05.010